Emerging role of Toll-like receptors in the control of pain and itch

【Author】

Tong Liu1, Yong-Jing Gao1,2, Ru-Rong Ji1 1 Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA 2 Institute of Nautical Medicine, Nantong University, Nantong 226001, China

【Abstract】

Toll-like receptors (TLRs) are germline-encoded pattern-recognition receptors that initiate innate immune responses by recognizing molecular structures shared by a wide range of pathogens, known as pathogen-associated molecular patterns (PAMPs). After tissue injury or cellular stress, TLRs also detect endogenous ligands known as danger-associated molecular patterns (DAMPs). TLRs are expressed in both non-neuronal and neuronal cell types in the central nervous system (CNS) and contribute to both infectious and non-infectious disorders in the CNS. Following tissue insult and nerve injury, TLRs (such as TLR2, TLR3, and TLR4) induce the activation of microglia and astrocytes and the production of the proinflammatory cytokines in the spinal cord, leading to the development and maintenance of inflammatory pain and neuropathic pain. In particular, primary sensory neurons, such as nociceptors, express TLRs (e.g., TLR4 and TLR7) to sense exogenous PAMPs and endogenous DAMPs released after tissue injury and cellular stress. These neuronal TLRs are new players in the processing of pain and itch by increasing the excitability of primary sensory neurons. Given the prevalence of chronic pain and itch and the suffering of affected people, insights into TLR signaling in the nervous system will open a new avenue for the management of clinical pain and itch.

【Keywords】

astrocytes; microglia; Toll-like receptor; pain; itch; danger-associated molecular patterns; pathogen-associated molecular patterns

References

To explore the background and basis of the node document

  • [1] Jun Chen 1,2 1 Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, the Fourth Military Medical University, Xi’an 710038, China 2 Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, China, History of pain theories, Neuroscience Bulletin,
  • [2] Yong-Jing Gao;;Ru-Rong Ji, Targeting Astrocyte Signaling for Chronic Pain, Neurotherapeutics,
  • [3] Fei-Yu Zhang;;You Wan;;Zhen-Kang Zhang;;Alan R. Light;;Kai-Yuan Fu, Peripheral Formalin Injection Induces Long-Lasting Increases in Cyclooxygenase 1 Expression by Microglia in the Spinal Cord, Journal of Pain,
  • [4] Cinthia Farina;;Francesca Aloisi;;Edgar Meinl, Astrocytes are active players in cerebral innate immunity, Trends in Immunology,

More>>

Similar documents

Documents that have the similar content to the node document

More>>